NEW BRAUNFELS WESTSIDE COMMUNITY CENTER
LIBRARY

2910 S I-35 FRONTAGE ROAD
NEW BRAUNFELS, TX 78130

CONSTRUCTION SET
PHASING PLAN

PHASE I
A. REMOVE PUBLIC WORKS TRAILER
B. DEMO EXISTING PARKING
C. PERFORM ABATEMENT AT FORMER CHURCH

PHASE II
A. DEMOLISH FORMER CHURCH

PHASE III
A. CONSTRUCT NEW UTILITY INFRASTRUCTURE
B. INSTALL NEW PARKING AND FIRELANE

PHASE IV
CONSTRUCT NEW LIBRARY

NOTE:
THIS PHASING PLAN IS ONLY A SUGGESTION OF HOW THE PROJECT IS TO BE CONSTRUCTED. THE CONSTRUCTION MANAGER WILL HAVE FINAL DETERMINATION AS TO PROJECT CONSTRUCTION SCHEDULE AFTER THEY HAVE BID OUT THIS PROJECT. THIS PHASING PLAN IS SUBJECT TO CHANGE.

NOTES BY NUMBER
1. NOT USED
2. NOT USED
3. CONSTRUCT MONUMENT SIGNS IN PHASE IV

SITE PHASING NOTES

PHASE I
A. REMOVE PUBLIC WORKS TRAILER
B. DEMO EXISTING PARKING
C. PERFORM ABATEMENT AT FORMER CHURCH

PHASE II
A. CONSTRUCT NEW UTILITY INFRASTRUCTURE
B. INSTALL NEW PARKING AND FIRELANE

PHASE IV
CONSTRUCT NEW LIBRARY

NOTE:
THIS PHASING PLAN IS ONLY A SUGGESTION OF HOW THE PROJECT IS TO BE CONSTRUCTED. THE CONSTRUCTION MANAGER WILL HAVE FINAL DETERMINATION AS TO PROJECT CONSTRUCTION SCHEDULE AFTER THEY HAVE BID OUT THIS PROJECT. THIS PHASING PLAN IS SUBJECT TO CHANGE.

NOTES BY NUMBER
1. NOT USED
2. NOT USED
3. CONSTRUCT MONUMENT SIGNS IN PHASE IV

SHEET SIZE
30 x 42

KAI JOB NUMBER:
DATE:

REVISIONS
DRAWN BY:
CHECKED BY:

ISSUE DATE:

© 2020 Komatsu Architecture, Inc.

1/26/2021 9:11:33 AM

PHASING PLAN

G0.03

NEW BRAUNFELS WESTSIDE
COMMUNITY CENTER LIBRARY
2910 S I-35 FRONTAGE ROAD
NEW BRAUNFELS, TX 78130

2018.118
08.21.2020

CONSTRUCTION SET

Author
Checker

01/25/21

1/16" = 1'-0"
NOTE:
CONTRACTOR TO COORDINATE WITH OWNER FOR DEMOLITION AND REMOVAL OF BUILDINGS, SIGNS, BOOK DROPOFF AND ANY OTHER ITEMS THAT MAY BE SALVAGED.
CONCRETE WASHOUT PIT DETAIL
REFLECTIVE ALUMINUM "DO NOT ENTER" SIGN N.T.S.
A. The building movements specified herein are anticipated to occur and shall

B. Spandrel beam deflections: Provisions shall be made in the building
 a. Titen HD (ICC-ES ESR-1056), Simpson Strong-Tie Co., Inc.
 b. Kwik HUS-EZ and HUS-EZ I (ICC-ESR-3027), Hilti Inc.

C. Structural steel connections not specifically detailed on the Structural Drawings
 b. Acrylic: AT-XP (IAPMO-ES ER-0281), Simpson Strong-Tie Co., Inc.

D. Lateral building drift: Provisions shall be made in building cladding and other

E. Compaction and moisture content of subgrade and each lift of structural fill

F. Provide a vapor retarder that conforms to ASTM E1745, Class A or better

G. Grade beams in contact with earth shall be formed both sides unless noted otherwise in

H. Void form composition shall be of corrugated paper material with a moisture
 a. Notify Architect if the final roof slope is less than 1/4"per foot. Elevation
 b. Building cladding support steel in space not air conditioned and/or
 c. Angles shall conform to ASTM A36.
 d. Round hollow structural shape members shall conform to ASTM A500,
 e. Structural steel plate shall conform to ASTM A36.

I. Where conflict exists among the various parts of the structural contract

J. Reinforcing steel shop drawings shall include placing drawings for templates to set

K. Joint reinforcing shall be discontinuous at control and expansion joints.

L. Contractor shall include in bid documents, unit-costs for casing if required and

M. Joint reinforcing shall be redirectable at any point along its length. Holes shall be drilled using a hammer

N. Table 14-2.

O. B. Spandrel beam deflections: Provisions shall be made in the building
 a. Titen HD (ICC-ES ESR-1056), Simpson Strong-Tie Co., Inc.
 b. Kwik HUS-EZ and HUS-EZ I (ICC-ESR-3027), Hilti Inc.

P. C. Structural steel connections not specifically detailed on the Structural Drawings
 b. Acrylic: AT-XP (IAPMO-ES ER-0281), Simpson Strong-Tie Co., Inc.

Q. D. Lateral building drift: Provisions shall be made in building cladding and other

R. E. Compaction and moisture content of subgrade and each lift of structural fill

S. F. Provide a vapor retarder that conforms to ASTM E1745, Class A or better

T. G. Grade beams in contact with earth shall be formed both sides unless noted otherwise in

U. H. Void form composition shall be of corrugated paper material with a moisture
 a. Notify Architect if the final roof slope is less than 1/4"per foot. Elevation
 b. Building cladding support steel in space not air conditioned and/or
 c. Angles shall conform to ASTM A36.
 d. Round hollow structural shape members shall conform to ASTM A500,
 e. Structural steel plate shall conform to ASTM A36.

V. I. Where conflict exists among the various parts of the structural contract

W. J. Reinforcing steel shop drawings shall include placing drawings for templates to set

X. K. Joint reinforcing shall be discontinuous at control and expansion joints.

Y. L. Contractor shall include in bid documents, unit-costs for casing if required and

Z. M. Joint reinforcing shall be redirectable at any point along its length. Holes shall be drilled using a hammer
CONSTRUCTION NOTES

S1.02

KAI JOB NUMBER: 08/21/2020

© 2020 Komatsu Architecture, Inc.

NEW BRAUNFELS, TX 78130
2910 S I-35

NEW BRAUNFELS WESTSIDE COMMUNITY CENTER LIBRARY

PUBLIC LIBRARY

BETH ANNE FEERO
Author

JQ ENGINEERING, LLP
AUSTIN, TEXAS 78746
108 WILD BASIN RD, SUITE 350 512.474.9094
JQENG.COM

1/24/2021 12:24:23 PM

DEFERRED SUBMITTALS

B. The following structural components shall be treated as deferred submittals:

1. Steel Connections
2. Steel Joists
3. Guardrail and Handrail Systems
4. Cold Formed Metal Framing
5. Curtainwall Systems

C. Design of the items listed above shall be in accordance with the General Building Code, Section 107.3.4.2, the following submittals will not be issued at the time of permit application, and will be “deferred” to a later date. Deferred submittals are required to be submitted to the Building Official. However, these submittals shall be submitted and approved by the Registered Design Professional in Responsible Charge (RDPiRC) prior to submitting to the Building Official. Deferred submittals are design items being delegated to the Contractor which shall be designed and sealed by a registered professional engineer licensed in the state having jurisdiction at the project site.

D. Work associated with Deferred Submittals shall not be performed until the deferred submittals are submitted and approved.

E. Refer to the Contract Documents for additional Deferred Submittal items.

SYMBOLS LEGEND

PAIRS - AT B.F. - BACK TO BACK BSMT. - BASEMENT BM. - BEAM BRG. - BEARING B.F.F. - BELOW FINISH FLOOR...
special inspections shall be performed in accordance with Chapter 17 of the 2018 International Building Code (IBC) by a Special Inspector. The special inspections shall be continuous reports to the building official and the Architect for all time spent at the site. The Inspector shall bring discrepancies to the special inspections are in addition to the other inspections listed in these Structural Notes or Project Specifications.

<table>
<thead>
<tr>
<th>Special Inspections</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Inspect all other welds.</td>
<td>ACI 318 Ch. 20, 1908.4</td>
</tr>
<tr>
<td>d. WPS followed</td>
<td>ACI 318: Ch. 19, 26.4.3, 26.4.4</td>
</tr>
<tr>
<td>h. Verify use of required design mix.</td>
<td>ACI 318: Ch. 19, 26.12</td>
</tr>
<tr>
<td>i. Fit-up of fillet welds</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>j. Arc strikes</td>
<td>ACI 318: Ch. 19, 26.6.1-26.6.3</td>
</tr>
<tr>
<td>k. Preheat applied</td>
<td>ACI 318: Ch. 19, 26.12</td>
</tr>
<tr>
<td>l. Interpass temperature maintained (min./max.)</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>m. Root pass temperature maintained (min./max.)</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>n. Crater cross section</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>o. Weld profiles</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>p. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>q. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>r. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>s. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>t. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>u. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>v. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>w. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>x. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>y. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
<tr>
<td>z. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.11.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Inspections</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Control and handling of welding consumables</td>
<td>AWS D1.1 N5.4-1: 1705.2.1</td>
</tr>
<tr>
<td>b. Proper tools available for fasteners installation</td>
<td>AWS D1.1 N5.6-1 1705.2.1</td>
</tr>
<tr>
<td>c. Proper storage for mechanical fasteners</td>
<td>AWS D1.1 N5.6-2</td>
</tr>
<tr>
<td>d. Manufacturer certifications for welding consumables available</td>
<td>AWS D1.1 N5.6-3</td>
</tr>
<tr>
<td>e. WPS followed</td>
<td>AWS D1.1 N5.6-4</td>
</tr>
<tr>
<td>f. Interpass temperature maintained (min./max.)</td>
<td>AWS D1.1 N5.6-5</td>
</tr>
<tr>
<td>g. Root pass temperature maintained (min./max.)</td>
<td>AWS D1.1 N5.6-6</td>
</tr>
<tr>
<td>h. Crater cross section</td>
<td>AWS D1.1 N5.6-7</td>
</tr>
<tr>
<td>i. Weld profiles</td>
<td>AWS D1.1 N5.6-8</td>
</tr>
<tr>
<td>j. Welding access holes</td>
<td>AWS D1.1 N5.6-9</td>
</tr>
<tr>
<td>k. Welding access holes</td>
<td>AWS D1.1 N5.6-10</td>
</tr>
<tr>
<td>l. Welding access holes</td>
<td>AWS D1.1 N5.6-11</td>
</tr>
<tr>
<td>m. Welding access holes</td>
<td>AWS D1.1 N5.6-12</td>
</tr>
<tr>
<td>n. Welding access holes</td>
<td>AWS D1.1 N5.6-13</td>
</tr>
<tr>
<td>o. Welding access holes</td>
<td>AWS D1.1 N5.6-14</td>
</tr>
<tr>
<td>p. Welding access holes</td>
<td>AWS D1.1 N5.6-15</td>
</tr>
<tr>
<td>q. Welding access holes</td>
<td>AWS D1.1 N5.6-16</td>
</tr>
<tr>
<td>r. Welding access holes</td>
<td>AWS D1.1 N5.6-17</td>
</tr>
<tr>
<td>s. Welding access holes</td>
<td>AWS D1.1 N5.6-18</td>
</tr>
<tr>
<td>t. Welding access holes</td>
<td>AWS D1.1 N5.6-19</td>
</tr>
<tr>
<td>u. Welding access holes</td>
<td>AWS D1.1 N5.6-20</td>
</tr>
<tr>
<td>v. Welding access holes</td>
<td>AWS D1.1 N5.6-21</td>
</tr>
<tr>
<td>w. Welding access holes</td>
<td>AWS D1.1 N5.6-22</td>
</tr>
<tr>
<td>x. Welding access holes</td>
<td>AWS D1.1 N5.6-23</td>
</tr>
<tr>
<td>y. Welding access holes</td>
<td>AWS D1.1 N5.6-24</td>
</tr>
<tr>
<td>z. Welding access holes</td>
<td>AWS D1.1 N5.6-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special Inspections</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Cleanliness (condition of steel surfaces)</td>
<td>ACI 318: Ch. 19, 1908.10</td>
</tr>
<tr>
<td>b. Dimensions (alignment, gaps at root)</td>
<td>ACI 318: Ch. 19, 26.12</td>
</tr>
<tr>
<td>c. Odor (condition of steel surfaces)</td>
<td>ACI 318: Ch. 19, 26.12</td>
</tr>
<tr>
<td>d. Preheat applied</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>e. Interpass temperature maintained (min./max.)</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>f. Root pass temperature maintained (min./max.)</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>g. Crater cross section</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>h. Weld profiles</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>i. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>j. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>k. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>l. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>m. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>n. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>o. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>p. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>q. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>r. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>s. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>t. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>u. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>v. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>w. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>x. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>y. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
<tr>
<td>z. Welding access holes</td>
<td>ACI 318: Ch. 19, 26.5</td>
</tr>
</tbody>
</table>
LEVEL 2 VERIFICATION AND INSPECTION OF MASONRY CONSTRUCTION (TMS 602-16 Table 3 & Table 4)

VERIFICATION, INSPECTION AND TESTING

MINIMUM TESTS

-- -- -- --

1. Prior to construction, verification of compliance of submittals.

TMS 602-16 Art. 1.5

2. Prior to construction, verification of \(f' \) and \(f'' \), except where specifically exempted by the code.

YES -- -- -- AAC

TMS 602-16 Art. 1.4 b

3. During construction, verification of slump flow and Visual Stability Index (VSI) when self-consolidating grout is delivered to the project site.

YES -- -- --

TMS 602-16 Art. 1.5 & 1.6.3

INSPECTION TASKS

As masonry construction begins, verify that the following are in compliance:

a. Proportions of site-prepared mortar

TMS 602-16 Art. 2.1, 2.6 A, X

b. Grade and size of prestressing tendons and anchorages

TMS 602-16 Art. 2.4 B & 2.4 H

c. Grade, type and size of reinforcement and anchor bolts, and bonded tendons

TMS 602-16 Art. 3.2 D & 3.2 F

TMS 602-16 Art. 3.4 & 3.6 A, TMS 602-16 Art. 3.6 B, TMS 602-16 Art. 3.2 E & 3.4, TMS 602-16 Art. 3.5 & 3.6 C

TMS 602-16 Art. 1.5

d. Proportions of site-prepared grout and prestressing grout for bonded tendons

TMS 602-16 Art. 2.6 B & 2.4 G.1.b

2. Placement of prestressing tendons and anchorages

TMS 602-16 Art. 2.4 & 2.4 H

TMS 602-16 Art. 3.2 D & 3.4, TMS 602-16 Sec. 10.8 & 10.9

TMS 602-16 Art. 1.5

ea. Materials and procedures with the approved submittals

YES -- -- --

TMS 602-16 Art. 3.3 B

b. Placement of masonry units and mortar joint construction

YES -- -- --

TMS 602-16 Art. 3.3 F

c. Size and location of structural members

YES -- -- --

TMS 602-16 Art. 3.3 F.1.b

d. Type, size, and location of anchors, including other details of anchorage of masonry to structural members, frames, or other construction

YES -- -- --

TMS 602-16 Sec. 1.2.1, 6.1, 6.3.1, 6.3.6, & 6.3.7

e. Welding of reinforcement

YES YES

TMS 402-16 Sec. 6.1.6.1.2

g. Preparation, construction and protection of masonry during cold weather (temperature below 40°F (4.4°C)) or hot weather (temperature above 90°F (32.2°C))

NO -- -- --

TMS 602-16 Art. 1.8 C & 1.8 D

h. Application and measurement of prestressing force

NO -- -- --

TMS 602-16 Art. 3.5 & 3.6 C

i. Placement of AAC masonry units and construction of thin-bed mortar

YES -- -- --

TMS 602-16 Art. 3.3 B.9

Special Inspector must be certified by ACI as a "Post-Installed Concrete Anchor Installation Inspector". A report must be submitted to the licensed design professional and building official documenting that the work covered by the report has been performed and that the materials used and documents and the Manufacturer's Printed Installation Instructions.

1. Required for the first 5,000 square feet (465 square meters) of AAC masonry.

2. Required after the first 5,000 square feet (465 square meters) of AAC masonry.

3. Required after the first 10,000 square feet (929 square meters) of AAC masonry.

4. Required after the first 25,000 square feet (2,326 square meters) of AAC masonry.

5. Required for the first 60,000 square feet (5,510 square meters) of AAC masonry.

6. Required for the first 100,000 square feet (9,290 square meters) of AAC masonry.

7. Required for the first 150,000 square feet (13,500 square meters) of AAC masonry.
1. TOP OF ROOF STRUCTURE IS SLOPED FOR DRAINAGE. SEE ELEVATIONS NOTED ON THE PLAN. SLOPES SHALL BE UNIFORM BETWEEN COLUMN CENTERLINES UNLESS SHOWN OTHERWISE.

2. TOP OF STEEL ELEVATION = TOP OF BEAM, JOIST, OR MEMBER SUPPORTING ROOF DECK = BOTTOM OF ROOF DECK.

3. JOISTS NOTED AS "SP" ARE SPECIAL DESIGNS TO BE PROVIDED BY SUPPLIER FOR LOADINGS INDICATED.

4. DESIGN JOISTS FOR NET UPLIFT OF __ POUNDS PER SQUARE FOOT (PSF) FOR WIND LOADING. DESIGN JOISTS WITHIN __ FEET OF ROOF EDGES FOR __ PSF NET UPLIFT.

5. DESIGN ROOF MEMBERS FOR LOADS INDICATED.

6. USE MODEL TBD FOR MEMBERS TO BE USED.

7. SIM. BTWN. GRIDS 2 & 3.3

8. BTWN. GRIDS 7 & 9.5

9. SIM. BTWN. GRIDS 2 & 7

SCALE: 1/8" = 1'-0"
1. TYPICAL DRILLED PIER WITH UNDERCREASED SHAFT DETAIL
2. TYPICAL GRADE BEAM OR WALL TOP OF PIER DETAIL
3. TYPICAL.getTotalPlan/View DETAIL
4. TYPICAL WOOP SLAD DETAIL
5. TYPICAL CORNER BARS AT WALL OR GRADE BEAM INTERSECTION DETAIL
6. TYPICAL GRADE BEAM PENETRATION DETAIL
7. TYPICAL HORIZONTAL GRADE BEAM PENETRATION DETAIL
8. TYPICAL FLATWORK AT EXTERIOR MODE AND ENTRIES DETAIL
9. TYPICAL STRUCTURAL SLAB CONSTRUCTION JOINT DETAIL
10. TYPICAL CONCRETE BEAM CONSTRUCTION JOINT DETAIL

DOWEL SCHEDULE

<table>
<thead>
<tr>
<th>Size</th>
<th>Dia.</th>
<th>Thr.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>3/8"</td>
<td>2"</td>
<td>3'-0"</td>
</tr>
<tr>
<td>No. 2</td>
<td>1/2"</td>
<td>3"</td>
<td>2'-0"</td>
</tr>
<tr>
<td>No. 3</td>
<td>5/8"</td>
<td>4"</td>
<td>1'-0"</td>
</tr>
</tbody>
</table>

NOTE:
1. SCHEDULED DOWELS ARE MARKED "DWL." ON THE SECTION S AND DETAILS.
2. DOWEL SPACING TO BE THE SAME AS VERTICAL BEAM OR WALL REINFORCEMENT UNLESS NOTED OTHER ON DETAILS.
3. DOWELS AT SIZE 24" TO 30"

NOTES:
1. MATCH SIZE, LOCATION AND NUMBER OF HORIZONTAL AND OUTSIDE BARS MUST BE MATCHED.
2. WHERE 90 DEGREE HOOKS ARE PROVIDED FOR TOP BARS CORNER BARS MAY BE OMITTED AT TOP. WHERE 90 DEGREE
2. PLACE SOIL RETAINERS AT SIDES OF VOID SPACE UNDER GRADE BEAM, AND WALLS BELOW GRADE. 3. INSTALL SOIL RETAINERS IN STRICT ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND AS FOLLOWS:
 A. PROVIDE STD. HOOK FOR TOP & BOT. BARS AT END SPAN OR AT DISCONTINUOUS ENDS AT MIDSPAN U.N.O.
 B. PROVIDE DOWELS AT SIZE DOWEL SCHEDULE
 C. DO NOT SPLICE TOP BARS IN CANTILEVER PIPE SLEEVE - SEE MEP SERIES DRAWINGS FOR EXACT SIZE AND LOCATION (Ø NOT TO EXCEED 6" NOR 1/3 BEAM DEPTH; SUBMIT DRAWING TO ARCHITECT/ENGINEER SHOWING LOCATION AND SIZE OF ALL PENETRATIONS LARGER THAN 3" PRIOR TO PLACEMENT)

TYPICAL EXTERIOR CORNER DETAIL

<table>
<thead>
<tr>
<th>Size</th>
<th>Dia.</th>
<th>Thr.</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>1/2"</td>
<td>3"</td>
<td>2'-0"</td>
</tr>
<tr>
<td>No. 2</td>
<td>5/8"</td>
<td>4"</td>
<td>1'-0"</td>
</tr>
</tbody>
</table>

NOTES:
1. THIS DETAIL APPLIES TO WIDTH "T" W
2. INCREASE ALL LAP LENGTHS BY 25% @ 75 ksi REINF. BARS - TYP.
3. 3 ADDITIONAL STIRRUPS @ 4" O.C. (TYP. EACH SIDE OF PIPE SLEEVE)
4. STORE RETAINERS FLAT AND PROTECTED FROM DIRECT
5. BEARING STRATUM - SEE DRILLED PIER NOTES

NOTES:
1. CITY REVIEW 3 / BID AMENDED 01 25 JAN 21
2. PLACE SOIL RETAINERS AT SIDES OF VOID SPACE UNDER GRADE BEAM, AND WALLS BELOW GRADE. 3. INSTALL SOIL RETAINERS IN STRICT ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS AND AS FOLLOWS:
 A. PROVIDE STD. HOOK FOR TOP & BOT. BARS AT END SPAN OR AT DISCONTINUOUS ENDS AT MIDSPAN U.N.O.
 B. PROVIDE DOWELS AT SIZE DOWEL SCHEDULE
 C. DO NOT SPLICE TOP BARS IN CANTILEVER PIPE SLEEVE - SEE MEP SERIES DRAWINGS FOR EXACT SIZE AND LOCATION (Ø NOT TO EXCEED 6" NOR 1/3 BEAM DEPTH; SUBMIT DRAWING TO ARCHITECT/ENGINEER SHOWING LOCATION AND SIZE OF ALL PENETRATIONS LARGER THAN 3" PRIOR TO PLACEMENT)
TYPICAL TOP OF PIER DETAIL

TYPICAL TOP OF PIER DETAIL

TYPICAL TOP OF PIER DETAIL

TYPICAL REINFORCEMENT AT CONCRETE SLAB OPENING DETAIL

TYPICAL EXTERIOR TOP OF PIER DETAIL

TYPICAL DRILLED PIER DETAIL

PIER SCHEDULE - STRAIGHT SHAFT

1. Typical Top of Pier Detail
2. Typical Top of Pier Detail
3. Typical Top of Pier Detail
4. Typical Reinforcement at Concrete Slab Opening Detail
5. Typical Exterior Top of Pier Detail
6. Typical Drilled Pier Detail

NOTE: Grade beam reinf. (not shown) is continuous through pilaster at sim.
SLAB REINF.:

- DWL. "B" @ 12" O.C. W/#4 CONT.
- 1'-4" DOWEL TO MATCH SIZE & SPA. OF VERT. REINF. - HOOK AT BOT. AS SHOWN

REINF.:

- 3-#7 TOP & BOT. W/#4 STIRR.
- 1 @ 2", REM. @ 8" O.C.
- #4 E.F. @ 12" O.C. MAX.

SITE PAVING WHERE OCCURS - SEE ARCH'L VAPOR RETARDER

#5 @ 16" O.C. IN VERTICALLY GROUTED CELL 8" NOMINAL CMU - SEE STRUCT'L NOTES

KNOW-OUT WEB BOND BEAM CONT. W/ 2-#4 CONT. HORIZ. 8'-0" MAX. 2'-8" MIN. LAP

FIN. GRADE - SEE CIVIL

HORIZ. BARS @ 8" O.C. AT BEAMS GREATER THAN 36" IN DEPTH

STIRRUPS @ 6" O.C. @ 3A

7 1/4" SEE PLAN

© 2020 Komatsu Architecture, Inc.

BETH ANNE FEERO

1/26/2021 12:36:16 PM
NOTES BY NUMBER

1. ASPHALT PAVING TO BE REMOVED - REFER CIVIL
2. STRIPING TO BE REMOVED - REFER CIVIL
3. FORMER CHURCH BUILDING TO BE REMOVED IN ITS ENTIRETY - REFER CIVIL, MECHANICAL, ELECTRICAL AND STRUCTURAL
4. FOUNDATION CONCRETE TO BE REMOVED
5. FOUNDATION CONCRETE AND SUPPORT STRUCTURE TO BE REMOVED, INCLUDING CONCRETE Used FOR POSTS AND CONCRETE LANDING CONCRETE CURB TO REMAIN
6. PORTABLE BUILDING AND UTILITY CONNECTIONS TO FOLLOW CITY OF NEW BRAUNFELS SPECIFICATIONS
7. SHED TO BE REMOVED BY THE CITY OF NEW BRAUNFELS
8. CONCRETE CURB TO BE REMOVED
9. ACCESSIBLE PARKING SPACE SHOWN TO REMAIN - REMOVE AND CLEAR
10. Portable building and utility connections to be removed by the City of New Braunfels - upon 60 days notice
11. SHED TO BE REMOVED BY THE CITY OF NEW BRAUNFELS
12. STRIPING AND ASPHALT PAVING TO BE REMOVED

SITE DEMOLITION PLAN

NEW BRAUNFELS WESTSIDE
COMMUNITY CENTER LIBRARY
2910 S I-35 FRONTAGE ROAD
NEW BRAUNFELS, TX 78130

CONSTRUCTION SET

KOMATSU ARCHITECTURE, INC.
1/26/2021 9:10:29 AM

© 2020 KOMATSU ARCHITECTURE, INC.

INTERIOR VIEW LOOKING TOWARD LOBBY

PROGRAM ROOM INTERIOR VIEW

VIEW LOOKING TOWARD STUDY ROOMS
PROPOSED BUILDING

FLAGPOLE
FLASHING COLLAR
WEDGES
CORRUGATED GALVANIZED METAL
DRY SAND
CONCRETE
STEEL CANTERING
BASE PLATE
SUPPORT PLATE
GROUND SLEEVE
WEDGES

PROPOSED LIBRARY
8,844 SQ. FT.
FF EL. = 703.14'

EXISTING COMMUNITY CENTER - 1-STORY
9,089 SQ. FT. PLUS MEZZANINE
FF EL. = 703.14'

NOTES BY SYMBOL
1. AREA DESIGNATED FOR GARDEN
2. EXTERIOR STONE BENCHES
3. 1 1/2" RED CRUSHED STONE DRAINAGE BED
4. CONCRETE SIDEWALK
5. ILLUMINATED BRONZE ALUMINUM HANDRAIL
6. FIRE LANE
7. COR-TEN PLANTERS WITH STONE CAP - REFER LANDSCAPE
8. PERMEABLE PAVING SYSTEM - REFER CIVIL
9. EXISTING FIRE LINE TO REMAIN
10. 42" W. GATE
11. COMPRESSOR FOR HVAC TO BE RELOCATED TO ALLOW FOR INSTALLATION OF WALKWAY FOUNDATIONS
12. 20' FLAGPOLE
13. 25' FLAGPOLE
14. COVERED WALKWAY
15. EXISTING STEEL EGRESS STAIR TO REMAIN
16. UPPER LANDING OF EXISTING STAIR TO REMAIN
17. STRIPING TO BE REMOVED
18. 12" H. PAINTED LETTERS
19. 12" - 4 1/4"
20. 12" - 4 1/8"
21. 4' - 1"
22. 3' - 0"
23. 2' - 6"
24. 2' - 0"
25. 1' - 0"
26. 3'-6"
27. 6' - 8 1/8"
28. 5' - 6"
29. 6" - 6 1/2"
30. 6" - 6 1/4"
31. 6" - 6 1/2"
32. 6' - 6 1/2" (B)
33. 6' - 6 1/2" (A)
34. 12" - 6 1/2" (B)
35. 18" - 6 1/2" (A)
36. PRECAST CONCRETE SPLASH BLOCK, SMOOTH AS CAST SURFACE FINISH (+/- 1"
37. SHEET SIZE: 30 x 42
38. KAISER JOB NUMBER: 08.21.2020
39. DATE: 2018.118
40. CONSTRUCTION SET
41. ISSUE DATE: 01/25/21
42. ARCHITECTURAL SITE PLAN
43. A0.01
44. NEW BRAUNFELS WESTSIDE COMMUNITY CENTER LIBRARY
45. 2910 S I-35 FRONTAGE ROAD
46. NEW BRAUNFELS, TX 78130
47. KOMAKU CONSTRUCTION SET
48. DRAWN BY: DATE: 01/26/21 8:58:43 AM
49. CHECKED BY: A0.01
50. KOMAKU ARCHITECTURAL SET
51. NO PARKING
52. NO PARKING
53. NO PARKING
54. TYP.
1. Semi-recessed fire extinguisher cabinet and extinguisher
2. Tile compliant, 6 gauge, drip edge, downspout with bottle filler
3. Outdoor stone benches
4. 1 1/2" red crushed stone drainage bed
5. Continuous LED weatherproof fixture mounted to underside of coping
6. Double height lockers
7. Painted AESS steel column
8. Fire retardant treated plywood 4' x 8'
9. Fire retardant treated plywood 8' - 6 1/4"
10. Fire retardant treated plywood 12' - 0"
11. Fire retardant treated plywood 12' - 0"
12. Fire retardant treated plywood 12' - 0"
13. Fire retardant treated plywood 12' - 0"
14. Fire retardant treated plywood 14' - 7 1/4"
15. Fire retardant treated plywood 14' - 5 3/4"
16. Fire retardant treated plywood 8' - 0"
17. Fire retardant treated plywood 4' - 0"
18. Fire retardant treated plywood 8' - 0"
19. Fire retardant treated plywood 8' - 0"
20. Fire retardant treated plywood 7' - 10 1/4"
21. Fire retardant treated plywood 10' - 3 5/8"
22. Fire retardant treated plywood 19' - 10 7/8"
23. Fire retardant treated plywood 11' - 8"
24. Fire retardant treated plywood 10' - 8 3/8"
25. Fire retardant treated plywood 9' - 4 5/8"
26. Fire retardant treated plywood 10' - 0"
27. Fire retardant treated plywood 6' - 8 3/4"
28. Fire retardant treated plywood 6' - 8 3/4"
29. Fire retardant treated plywood 6' - 8 3/4"
30. Fire retardant treated plywood 6' - 9 1/2"
31. Fire retardant treated plywood 60°
32. Fire retardant treated plywood 25°
33. Fire retardant treated plywood 75°
34. Fire retardant treated plywood 15°
35. Fire retardant treated plywood 15°
36. Fire retardant treated plywood 75°
37. Fire retardant treated plywood 15°
38. Fire retardant treated plywood 15°
39. Fire retardant treated plywood 15°
40. Fire retardant treated plywood 15°
41. Fire retardant treated plywood 15°
42. Fire retardant treated plywood 15°
43. Fire retardant treated plywood 15°
44. Fire retardant treated plywood 15°
45. Fire retardant treated plywood 15°
46. Fire retardant treated plywood 15°
47. Fire retardant treated plywood 15°
48. Fire retardant treated plywood 15°
49. Fire retardant treated plywood 15°
50. Fire retardant treated plywood 15°
51. Fire retardant treated plywood 15°
52. Fire retardant treated plywood 15°
53. Fire retardant treated plywood 15°
54. Fire retardant treated plywood 15°
55. Fire retardant treated plywood 15°
56. Fire retardant treated plywood 15°
57. Fire retardant treated plywood 15°
58. Fire retardant treated plywood 15°
59. Fire retardant treated plywood 15°
60. Fire retardant treated plywood 15°
61. Fire retardant treated plywood 15°
62. Fire retardant treated plywood 15°
63. Fire retardant treated plywood 15°
64. Fire retardant treated plywood 15°
65. Fire retardant treated plywood 15°
66. Fire retardant treated plywood 15°
67. Fire retardant treated plywood 15°
68. Fire retardant treated plywood 15°
69. Fire retardant treated plywood 15°
70. Fire retardant treated plywood 15°
71. Fire retardant treated plywood 15°
72. Fire retardant treated plywood 15°
73. Fire retardant treated plywood 15°
74. Fire retardant treated plywood 15°
75. Fire retardant treated plywood 15°
76. Fire retardant treated plywood 15°
77. Fire retardant treated plywood 15°
78. Fire retardant treated plywood 15°
79. Fire retardant treated plywood 15°
80. Fire retardant treated plywood 15°
81. Fire retardant treated plywood 15°
82. Fire retardant treated plywood 15°
83. Fire retardant treated plywood 15°
84. Fire retardant treated plywood 15°
85. Fire retardant treated plywood 15°
86. Fire retardant treated plywood 15°
87. Fire retardant treated plywood 15°
88. Fire retardant treated plywood 15°
89. Fire retardant treated plywood 15°
90. Fire retardant treated plywood 15°
91. Fire retardant treated plywood 15°
92. Fire retardant treated plywood 15°
93. Fire retardant treated plywood 15°
94. Fire retardant treated plywood 15°
95. Fire retardant treated plywood 15°
96. Fire retardant treated plywood 15°
97. Fire retardant treated plywood 15°
98. Fire retardant treated plywood 15°
99. Fire retardant treated plywood 15°
100. Fire retardant treated plywood 15°
101. Fire retardant treated plywood 15°
102. Fire retardant treated plywood 15°
103. Fire retardant treated plywood 15°
104. Fire retardant treated plywood 15°
105. Fire retardant treated plywood 15°
106. Fire retardant treated plywood 15°
107. Fire retardant treated plywood 15°
108. Fire retardant treated plywood 15°
109. Fire retardant treated plywood 15°
110. Fire retardant treated plywood 15°
111. Fire retardant treated plywood 15°
112. Fire retardant treated plywood 15°
113. Fire retardant treated plywood 15°
114. Fire retardant treated plywood 15°
115. Fire retardant treated plywood 15°
116. Fire retardant treated plywood 15°
117. Fire retardant treated plywood 15°
118. Fire retardant treated plywood 15°
119. Fire retardant treated plywood 15°
120. Fire retardant treated plywood 15°
121. Fire retardant treated plywood 15°
122. Fire retardant treated plywood 15°

NOTES BY SYMBOL
- A; REFER TO SHEET G0.01 FOR SYMBOLS LEGEND
- B; REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE
- C; REFER TO SHEET G0.01 FOR SYMBOLS LEGEND

GENERAL NOTES
- A. REFER TO SHEET G0.01 FOR SYMBOLS LEGEND
- B. REFER TO SHEET G0.01 FOR SYMBOLS LEGEND
- C. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE
- D. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE
- E. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE
- F. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE
- G. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE

BUILDING ENVELOPE GENERAL NOTES
- A. R-L ULTRASLAB PAPER FIBERBOARD INSULATION
- B. CONTINUOUS RIGID INSULATION
- C. CONTINUOUS RIGID INSULATION
- D. CONTINUOUS RIGID INSULATION
- E. CONTINUOUS RIGID INSULATION
- F. CONTINUOUS RIGID INSULATION
- G. CONTINUOUS RIGID INSULATION
3 - 5/8" METAL STUDS AT 16" O.C.

5/8" GYPSUM BOARD TO 6" ABOVE FINISHED CEILING

BRACE TO BOTTOM ROOF DECK

5/8" CEMENT BOARD TO DECK

CERAMIC TILE

WALL TYPE A1

NOTE:

PROVIDE TILE BACKER IN LIEU OF GYPSUM BOARD WHERE TILE OCCURS. REFER TO ROOM FINISH SCHEDULE.

WALL TYPE A2

WALL TYPE B

WALL TYPE C

WALL TYPE D1

WALL TYPE D2

WALL TYPE D3

WALL TYPE E

WALL TYPE F

WALL TYPE G

WALL TYPE H

WALL TYPE J

WALL TYPE K

WALL TYPE L

WALL TYPE M

WALL TYPE EX
1. Exposed structural steel framing, paint. Refer to finish schedule for structural. All internal supports are to be primed.

2. Acoustic sound treated on all five sides of restrooms, typical for all toilet/restroom walls.

3. Pendant light fixtures, fasten to structural framing.

4. Ral 7035, relying to interior elevations.

5. Interior glass demountable partition system.

7. Suspended acoustic ceiling tile cloud, suspension system per MFG.

8. Weathered corten steel columns, seal.

NOTES BY SYMBOL

X = Exposed Structural Steel Framing, Paint. Refer to Finish Schedule for Structural. All Internal Supports are to be Primed.

A-2 = ACoustic Sound Treated on all five sides of restrooms, typical for all toilet/restroom walls.

P = Pendant Light Fixtures, Fasten to Structural Framing.

D-4 = Interior Glass Demountable Partition System.

S = Suspended Gypsum Board Ceiling Cladding. Provide Stainless Steel Aircraft Cable Suspension System.

T = Suspended Acoustic Ceiling Tile Cloud, Suspension System per MFG.

C = Weathered Corten Steel Columns, Seal.
ROOM FINISH AND COLOR LEGEND

ACOUSTIC CEILING - REMOVABLE CEILING 24" X 24" UNLESS OTHERWISE NOTED
1. DECOGLUE INC., ALTERED STATE, COPPER CORE 3/16"

ACOUSTIC PANELS AND SUBBETS
1. PROGRESSIVELY PLUS, DIRECT HANGING 2X4" X 48" X 96" UNLESS OTHERWISE NOTED
A. COLOR: BARE WOOD
B. COLOR: BARE WOOD
C. COLOR: BARE WOOD
D. COLOR: BARE WOOD
E. COLOR: BARE WOOD
F. COLOR: BARE WOOD
G. COLOR: BARE WOOD
H. COLOR: BARE WOOD
I. COLOR: BARE WOOD
J. COLOR: BARE WOOD

CONCRETE HANDCARVED AND SEATED
1. CONCRETE INC., ALTERED STATE, COPPER CORE 3/8"

DRAWINGS PREPARED BY:

DRAWN BY:

CHECKED BY:

DATE: 08.21.2020
TIME: 9:06:03 AM
© 2020 Komatsu Architecture, Inc.
GENERAL NOTES

A. NOTES BY SYMBOL AND SHEET SPECIFIC
B. REFER TO SHEET GO.01 FOR SYMBOLS LEGEND AND LIST OF ABBREVIATIONS
C. REFER TO SHEET A5.01 FOR FINISH LEGEND AND SCHEDULE

NOTES BY SYMBOL

1. GYPSUM BOARD, PAINT 'P2' UNLESS NOTED OTHERWISE. REFER TO FINISH SCHEDULE
2. REFER TO DOOR SCHEDULE FOR SIZE, FINISH AND HARDWARE
3. PROVIDE BLOCKING AND RECESSED ELECTRICAL AND DATA FOR FUTURE SMART MONITOR
4. GYPSUM BOARD CONTROL JOINT AT 20' AFF UNLESS NOTED OTHERWISE
5. INTERIOR GLASS DEMOUNTABLE PARTITION SYSTEM
6. LINE OF PAINT COLOR CHANGE AT 15' AFF
7. SUSPENDED ACOUSTIC CLOUD, REF. REFLECTED CEILING PLAN
8. PENDANT LIGHT FIXTURE, REF. REFLECTED CEILING PLAN AND ELECTRICAL DRAWINGS
9. SOLID SURFACE WINDOW SILL
10. GYPSUM BOARD CEILING CLOUD, REF. REFLECTED CEILING PLAN
11. CEILING GRID CLOUD WITH ACOUSTIC CEILING TILE, REF. REFLECTED CEILING PLAN
12. PLUG MOLD THAT EXTENDS THE FULL WIDTH OF THE COUNTER
13. SOLID SURFACE COMPUTER BAR WITH SPLASH AND WATERFALL EDGES
14. ACOUSTIC PANEL 'AP1' WITH 1" THICKNESS
15. ACOUSTIC PANEL 'AP1' WITH 2" THICKNESS
16. ACOUSTIC PANEL 'AP1' WITH 3" THICKNESS
A. GYPSUM BOARDS CEILINGS PAINTED 'P1' UNLESS NOTED OTHERWISE.

B. ALL CEILING CLOUD VERTICAL TRIM PIECES PAINTED TO MATCH CLOUD PAINT COLOR UNLESS NOTED OTHERWISE.

NOTES BY SYMBOL:
1. CEILING MOUNTED PROJECTOR.
2. PAINT ALL EXPOSED STRUCTURAL, DUCT WORK, AND PLUMBING PROF UNLESS NOTED OTHERWISE.
3. PREFINISHED ALUMINUM METAL PANEL BEAM ENCLOSURES.

LIGHTING LEGEND:
- 2 x 2 RECESSED LED FIXTURE WITH CLEAR ACRYLIC LENS
- RECESSED LED STRIP LIGHT
- LINEAR LED PENDANT
- 4" RECESSED LED DOWNLIGHT
- LED PENDANT
- SUSPENDED ACOUSTIC ELEMENTS AND LED FIXTURES
- LED UNDER CABINET LIGHT FIXTURE
- LED PENDANT LIGHT FIXTURE
- SUSPENDED ACOUSTIC ELEMENTS AND LED FIXTURES
- LED PENDANT LIGHT FIXTURE

EXISTING COMMUNITY CENTER
ENLARGED REFLECTED CEILING PLAN AT ENTRY

ENLARGED REFLECTED CEILING PLAN - PROGRAM ROOM

ENLARGED REFLECTED CEILING PLAN - ANGLED WALLS
GENERAL NOTES

A. REFER TO SHEET A5.01 FOR FINISH LEGEND

B. REFER TO SHEET A5.01 FOR INSTALLATION METHODS

C. ALL SUSPENDED STEEL COLUMNS CENTER STEEL UNLESS NOTED OTHERWISE

D. FLOOR TILES TO HAVE BALANCED END CUTS UNLESS NOTED OTHERWISE

E. RUN FLOORING BENEATH MILLWORK UNLESS NOTED OTHERWISE

F. PROVIDE THRESHOLDS AT RESTROOMS OF BLACK MARBLE WITH TAS COMPLIANT PROFILE

GENERAL NOTES

A. REFER TO SHEET A5.01 FOR FINISH LEGEND

B. REFER TO SHEET A5.01 FOR INSTALLATION METHODS

C. ALL SUSPENDED STEEL COLUMNS CENTER STEEL UNLESS NOTED OTHERWISE

D. FLOOR TILES TO HAVE BALANCED END CUTS UNLESS NOTED OTHERWISE

E. RUN FLOORING BENEATH MILLWORK UNLESS NOTED OTHERWISE

F. PROVIDE THRESHOLDS AT RESTROOMS OF BLACK MARBLE WITH TAS COMPLIANT PROFILE
GENERAL NOTES
A. FOR ACTUAL FLOOR BOXES TYPES - REFER TO ELECTRICAL DRAWINGS
B. ORIENT FLOOR BOXES AS SHOWN ON THIS DRAWING TO COORDINATE WITH FURNITURE PLACEMENT

A8.04
FLOOR POWER PLAN
MECHANICAL SYSTEMS COMMISSIONING NOTES

CX.1 – COMMISSIONING REQUIREMENTS:

FUNCTIONAL PERFORMANCE TESTING (FPT)

1. OBJECTIVE OF FUNCTIONAL PERFORMANCE TESTING:

The objective of functional performance testing is to demonstrate that each system is operating according to the design intent. The building owner, acknowledging that the building owner has received the preliminary commissioning report, shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems;
- Random sampling (not less than 25% of the total number of each) may be permitted by the building owner.

The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The preliminary commissioning report shall be submitted to the contractor. The contractor shall complete the functional performance testing and provide signed copies to the contractor.

CX.3.1 – COMMISSIONING PROCEDURE:

1. PRE-FUNCTIONAL CHECKLIST:

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

CX.3.2 – COMMISSIONING REPORT:

The contractor shall complete the functional performance testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall provide signed copies to the contractor.

CX.3.3 – FUNCTIONAL PERFORMANCE TESTING (FPT)

1. OBJECTIVE OF FUNCTIONAL PERFORMANCE TESTING:

The objective of functional performance testing is to demonstrate that each system is operating according to the design intent. The building owner, acknowledging that the building owner has received the preliminary commissioning report, shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The preliminary commissioning report shall be submitted to the contractor. The contractor shall complete the functional performance testing and provide signed copies to the contractor.

CX.3.3.1 – EQUIPMENT:

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

The contractor shall participate in all necessary commissioning and testing, which includes:

- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.

A preliminary report of commissioning issues log shall be prepared by the contractor for review by the building owner. The building owner shall acknowledge that the building owner has received the preliminary commissioning report and shall identify:

- All modes as described in the sequence of operation;
- Performance of alarms;
- Operation of pumps and compressors;
- Operation of valves;
- Operation of motors;
- Operation of control devices, components, equipment, and systems.
LOCATE HVAC CONTROL PANEL AT THIS LOCATION. PROVIDE CONTROL CAPABILITY FOR ALL RTU'S FOR ADJUSTING SETPOINTS. ALL ROOM LOCATIONS ARE SENSORS ONLY.
COAST DOWN MODE

The BAS shall monitor and store the override time for each timed override input for documentation of after mechanical outdoor cooling and heating are disabled. The system shall be engaged thru the BAS system during occupied times.

SEQUENCE OF OPERATIONS: RTU

B. MORNING WARM

B. PURGE/NIGHT

SCHEDULED ON THROUGH THE BAS SYSTEM AND OPERATES

THE FAN IS COMMANDED ON BUT STATUS IS OFF

TURN OFF AS RAPIDLY AS POSSIBLE WITH ALL COOLING AND HEATING DISABLED, AND THE OUTDOOR AIR DAMPER SHALL BE CLOSED.

THE FAN MAY BE MANUALLY ENERGIZED OR DE-ENERGIZED.

THE UNIT SHALL MAINTAIN ALL OCCUPIED SET POINTS IN TEMPERATURE, PRESSURE, AND DUCT STATIC REQUIREMENTS. THE ROOFTOP UNIT SHALL PROTECT ITS SELF FROM OVERLOADS AND DAMAGE.

A. NIGHT SETBACK TEMPERATURE CONTROL

THE UNIT'S CONTROLLER SHALL MODULATE OPERATION OF THE COMPRESSOR AND SUPPLY FAN.

THE EF IS A DOWN BLAST ROOF MOUNTED DOWNBURST EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR. THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE UNIT'S CONTROLLER SHALL MODULATE OPERATION OF THE COMPRESSOR AND SUPPLY FAN.

THE EF IS A DOWN BLAST ROOF MOUNTED DOWNBURST EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE UNIT'S CONTROLLER SHALL MODULATE OPERATION OF THE COMPRESSOR AND SUPPLY FAN.

THE EF IS A DOWN BLAST ROOF MOUNTED DOWNBURST EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE UNIT'S CONTROLLER SHALL MODULATE OPERATION OF THE COMPRESSOR AND SUPPLY FAN.

THE EF IS A DOWN BLAST ROOF MOUNTED DOWNBURST EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE UNIT'S CONTROLLER SHALL MODULATE OPERATION OF THE COMPRESSOR AND SUPPLY FAN.

THE EF IS A DOWN BLAST ROOF MOUNTED DOWNBURST EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.

THE FAN IS A CENTRIFUGAL EXHAUST FAN PROVIDING RESTROOM EXHAUST FOR THE CORE RESTROOMS ON LIBRARY FLOOR.
PROPOSED LIBRARY
8,844 SQ. FT.
FF EL. = 703.25' = 100'-0"

EXISTING COMMUNITY CENTER
9,089 SQ. FT. PLUS MEZZANINE
FF EL. = 703.14'

UPPER STAIRLANDING
A/C
A/C
A/C
A/C
A/C
A/C
A/C
A/C
A/C

(7) (5) (7)

(5) (5), (2)HC (12)

(2)

(6) (3)

(13), (2)HC

NO PARKING

2" DOMESTIC WATER SERVICE

6" FIRE SERVICE

4" SANITARY SEWER SERVICE

REFER TO CIVIL DRAWINGS FOR CONTINUATION

APPROXIMATE LOCATION OF EXISTING GAS MAIN AND METER. FIELD VERIFY WITH LOCAL GAS COMPANY.

PROPOSED GAS METER LOCATION

REFER TO GENERAL NOTES ON THIS SHEET FOR DETAILS.

PROPOSED 1 1/4" GAS MAIN

BY LOCAL GAS COMPANY

ROUTED UNDERGROUND.

DCO

CONTRACTOR SHALL MAKE SURE THERE IS SUFFICIENT CLEARANCE (18") FROM GAS METER TO THE STRICKE SIDE OF DOOR.

PROVIDE DRY PIPE SIDEWALL HEAD SPRINKLER WITH EXTENSIONS TO BE CONNECTED TO WET SPRINKLER SYSTEM FOR AREA UNDER CANOPY.

EXISTING FIRE HYDRANT

EXISTING FIRE DEPARTMENT CONNECTION TO REMAIN

28350 N. Central Expressway,
Suite 775
Dallas, TX 75206
P 214.540.5900
© 2020 Komatsu Architecture, Inc.
ROUTE 6" NEW FIRE LINE TO THIS LOCATION. REFER TO CIVIL DRAWINGS FOR CONTINUATION.

ROUTE 2" NEW WATER LINE TO THIS LOCATION. REFER TO CIVIL DRAWINGS FOR CONTINUATION.

ROUTE 1 1/4" NEW GAS LINE TO THIS LOCATION. PROVIDE GAS COCK, UNION, 6" DIRT LEG WITH THREADED CAP AND PRESSURE REGULATOR 2 TO 0.5 PSIG ON GAS WATER HEATER AND EACH OF THE RTU'S ON THE ROOF.

PENETRATE EXTERIOR WALL AND ROUTE 1 1/4" GAS LINE, ROUTE 3/4" GAS LINE TO GWH-1. ROUTE 1" GAS LINE UP AND TO THE ROOF. PROVIDE GAS COCK FOR SHUTOFF, 6" DIRT LEG WITH THREADED CAP AND PRESSURE REGULATOR FROM 2 TO 0.5 PSIG.

PROVIDE THERMOSTATIC MIXING VALVE (TMV-1) LEONARD TM-26-LF OR EQUIVALENT.

3/4" CW UP TO ROOF HYDRANT.

PROVIDE WATTS LF009-QT REDUCED PRESSURE ZONE ASSEMBLY. ROUTE RPZ DISCHARGE TO MOAP SINK (MS-1).

ROUTE 1/2" CW TO COFEE MAKER AND ICE MAKER, PROVIDE WATTTS SD-3 DUAL CHECK BACKFLOW PREVENTER AND FILTER SYSTEM IN WATER SUPPLY.

REFER TO SHEET P1.01 FOR DRY PIPE SYSTEM AND SPRINKLER HEADS TO BE USED UNDER COVERED WALKWAY.
1. All gas pipes shall be zinc base aluminum painted.

2. Provide Miro 3-RAH-8 rooftop support roller pipe support at every 8' apart and under every branch joint connection.

3. Provide gas cock, union, 6" dirt leg with threaded cap and pressure regulator from 2 to 0.5 PSIG, at each RTU.

GENERAL NOTES:

1. Route 1 1/2" condensate down to sink (S-2) on first floor.

2. Provide Woodford Freezless roof hydrant model RHY1-MS. Route 1/4" drain from roof hydrant down to hub drain under lavatory on first floor.
DOMESTIC WATER RISER DIAGRAM
REFER TO CIVIL DRAWINGS FOR CONTINUATION

GAS METER

RTU-1
RTU-3
RTU-4
RTU-2

1" G
1" G
1/2" G
1/2" G
1/2" G

(96 MBH)
(96 MBH)
(120 MBH)
(96 MBH)

40' 0"

(408 MBH)

139' 6"

(607 MBH)

1" G

GAS COCK & UNION

GAS COCK, UNION, 6" DIRT LEG WITH THREADED CAP AND PRESSURE REGULATOR FROM 2 TO 0.5 PSIG

1" G

GAS COCK, UNION, 6" DIRT LEG WITH THREADED CAP AND PRESSURE REGULATOR FROM 2 TO 0.5 PSIG AT EACH RTU

© 2019 TLC No.: www.tlc-engineers.com

SHEET SIZE

KAI JOB NUMBER:

DATE:

REVISIONS

DRAWN BY:

CHECKED BY:

© 2020 Komatsu Architecture, Inc.
WHERE THERE IS A DISCREPANCY BETWEEN ABOVE GENERAL NOTES AND SPECIFICATIONS, WHERE APPLICABLE, SPECIFICATIONS SHALL BE FOLLOWED
COMMISSIONING NOTES

ACTIVITIES. THE CONTRACTOR SHALL INTEGRATE COMMISSIONING ACTIVITIES INTO THE MASTER SCHEDULE TO
MANUAL CONTRIBUTIONS.

THE DOCUMENTS DESCRIBED HEREIN SHALL BE PROVIDED TO THE
NEW BRAUNFELS WESTSIDE COMMUNITY CENTER LIBRARY
P

THE RESPONSIBLE TRADE SHALL CLEARLY LIST, AT THE BOTTOM OF THE PROCEDURE
COORDINATE THE EQUIPMENT AND SYSTEM DOCUMENTATION, EQUIPMENT START UP, CALIBRATION, FUNCTIONAL
SCHEDULES.

PRE-FUNCTIONAL CHECKLISTS, STARTUP AND INITIAL CHECKOUT, AND FUNCTIONAL PERFORMANCE TESTING. ALL
CONSTRUCTION DOCUMENTS AND THE USER'S OPERATIONAL NEEDS. THE CX PROCESS SHALL ENCOMPASS AND
EXECUTION OF THE CX PROCESS. THE CONTRACTOR SHALL BE FAMILIAR WITH ALL PARTS OF THE CX PLAN AND
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

RECOMMENDATIONS AND INDUSTRY ACCEPTED STANDARDS.

· DISPOSITION OF DEFICIENCIES FOUND DURING TESTING, INCLUDING DETAILS OF CORRECTIVE MEASURES USED OR
CORRECTED DEFICIENCIES AS REQUIRED.

· AT A MINIMUM, THE SUBMITTALS SHALL INCLUDE THE MANUFACTURER AND MODEL NUMBER, THE
NAME AND ADDRESS OF AT LEAST ONE LOCAL SERVICE AGENCY.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.

· LIGHTING AND DAYLIGHTING CONTROLS SYSTEM MAINTENANCE AND CALIBRATION INFORMATION, INCLUDING
CONTROL SYSTEMS, IN SYSTEM PROGRAMMING INSTRUCTIONS.

· RESULTS OF FUNCTIONAL PERFORMANCE TESTS.
EXISTING COMMUNITY CENTER
30,000 SQ. FT.
FF EL = 703.14'

PROPOSED LIBRARY
8,644 SQ. FT.
FF EL = 703.25' = 100'-0"
FUNCTION REQUIREMENTS AND LOCATION WITH OWNER PRIOR TO ROUGH IN.

THREE-TIER LIGHTING CONTROL ZONE #1:
- LIGHTING CONTROL ZONE #1 SHALL BE ON TIME CONTROL SCHEDULE. LIGHTS SHALL BE SHUT OFF.

LIGHTING CONTROL ZONE #2:
- LIGHTING CONTROL ZONE #2 SHALL BE ON TIME CONTROL SCHEDULE. LIGHTS SHALL BE SHUT OFF.

LIGHTING CONTROL ZONE #3:
- LIGHTING CONTROL ZONE #3 SHALL BE ON TIME CONTROL SCHEDULE. LIGHTS SHALL BE SHUT OFF.

LIGHTING CONTROL ZONE #4:
- LIGHTING CONTROL ZONE #4 SHALL BE ON TIME CONTROL SCHEDULE. LIGHTS SHALL BE SHUT OFF.

LIGHTING CONTROL ZONE #5:
- LIGHTING CONTROL ZONE #5 SHALL BE ON TIME CONTROL SCHEDULE. LIGHTS SHALL BE SHUT OFF.
LIGHTING FIXTURE SCHEDULE

<table>
<thead>
<tr>
<th>NO.</th>
<th>TYPE DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>SYMBOL</th>
<th>VOLTAGE</th>
<th>QUANTITY (KVA)</th>
<th>LOAD (KVA)</th>
<th>SPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>RECESS ED CAN LIGHT</td>
<td>FOCUS LIGHTING</td>
<td>R5.01</td>
<td>120/208V</td>
<td>100 2 (3) #3/0</td>
<td>100 2 (3) #3/0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE:
- All fixtures shall be selected by the architect and mounted at the architect's specified locations.
- Provide 24V power supplies, mounting accessories, connector, cables, and fittings for a complete system.
- Provide electrical grounding and bonding as required by the National Electrical Code - 2017 Edition and New Braunfels Local Amendments.
- Coordinate surge protection device requirements with equipment manufacturer.
- Coordinate exact length with the architect.
- Lighting fixtures shall be mounted at the architect's specified locations.

TRANSFORMERS BY NBU,

- WITH NBU, RE:E1.01
- PLAN FOR ADDITIONAL INFORMATION.
<table>
<thead>
<tr>
<th>Load Classification</th>
<th>Connected Load</th>
<th>Demand Factor</th>
<th>Estimated Demand</th>
<th>Panel Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting - Exterior</td>
<td>1.1 kVA</td>
<td>125.00%</td>
<td>1.3 kVA</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>5.4 kVA</td>
<td>100.00%</td>
<td>5.4 kVA</td>
<td></td>
</tr>
<tr>
<td>Motor</td>
<td>1.1 kVA</td>
<td>107.14%</td>
<td>1.1 kVA</td>
<td></td>
</tr>
<tr>
<td>Receptacle</td>
<td>29.5 kVA</td>
<td>66.93%</td>
<td>19.8 kVA</td>
<td></td>
</tr>
<tr>
<td>Neutral Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Conn. Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Conn. Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Est. Demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Amps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Branch Panel: R

Panelboard: MDP

Branch Panel: L

Notes:

- Calculation of total connected load and current based on load factors and demand factors.
- Mains rating and supply from details are included.
- Notes section provides additional information on load classification and connected load specifics.